
24. M. Porch and J. E. Cermak, Int. J. Heat Mass Transl., i, 1083-1095 (1964). 
25. D. J. Collins and C. W. Gorton, AIChE, 22, No. 3, 610-625 (1976). 

VISCOUS DISSIPATION IN JETS 

A. V. Soldatkin UDC 532.135 

On the basis of the boundary-layer equations we consider self-similar flow re- 
gimes of a jet with an exponential dependence of the viscosity on temperature. 

We consider an incompressible fluid jet ejected from a circular nozzle with an initial 
temperature not equal to the temperature of the surrounding medium. It is assumed that heat 
is produced in the flow because of viscous dissipation, and that the temperature dependence 
of the viscosity is given by 

P = Po exp (E/RT). ( 1 ) 

This relation is valid for the viscosities of condensed media in the temperature region of 
practical interest. 

It was observed in [i] that for a given pressure drop there was a sharp change in the 
thermal behavior of the flow of a Newtonian fluid in an infinite pipe for X > Xcr, if the 
temperature dependence of the viscosity is given by (i). This was called a hydrodynamic 
thermal explosion. 

In the present paper we study the possibility of a similar effect in an incompressible 
fluid jet. 

The equations of motion and the heat equation in the b0undary-layer approximation for the 
flow of the jet have the form [2]: 

u + v - ~ y  , 
&,c Oy y ay 

u + ~ - T  a-7 y +-- (2) - =  ~ ~ /  

0 0 
(vu) + - : -  (yv) = o. 

0---~ o y  

With the boundary conditions: 

au O, OT o-7= ~7 =~ v=0, y=0; T~T~, u~0, y~. (3) 

In the self-similar formulation of the problem the initial conditions are replaced by 
the integral relations 

! = Io = ~Pu~d2/4, Q = Qo = ~pcvuoTod~4- ( 4 )  

The  s u b s c r i p t  z e r o  i n d i c a t e s  t h a t  t h e  c o r r e s p o n d i n g  q u a n t i t y  i s  e v a l u a t e d  a t  t h e  n o z z l e  
cross section. 

We apply the method of local similarity [3]: 

u =Um (x) [' (@/% AT = AT~ (x) 0 (@, ~ = ~ 6  (x). ( 5 )  

Using the Frank-Kamenetskii expansion [4], we transform the system of equations (2) to the 
following form, using the method of local similarity: 

Leningrad Agricultural Institute. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 
54, No. 6, pp. 970-975, June, 1988. Original article submitted January 30, 1987. 

0022-0841/88/5406-0651512.50 �9 1988 Plenum Publishing Corporation 651 



F 

qs 
! 

o t,o x 

1 d 

2 z/ 

0 f 

Fig. 1 Fig. 2 
Fig. i. Variation of the heat flux F with distance along the axis of 
the jet: i) mb = 9, b = 0.05; 2) mb = 9, b = 0.I; 3) mb = i0, b = 
0.2; 4) mb = 9, b = 0.2. 

Fig. 2. Dependence of the heat removed QI and heat production Q= on 
the heat flux F. 

2 2 urn6 = 1/(2~0, 

Urn6 2 = SV exp ( - -  AT,, ] 
1 +  ~aT,~ ] x, 

dF ( AT~ ) u~ 
"dx = a~ Br exp 1 -t: ~-A--T,. ] ~ ' 

a~ = 0.21; "~1 = 0.09; ~,i = 0,15; ~ = 12. 

(6)  

We used the profile 1 - 3r = + 2# s [5] for the stream function and the H-profile for the 
temperature in performing the integration at the cross section of the nozzle. The H-profile 
for the temperature in a jet is valid when Pr ~ i, which is satisfied in condensed media 
over a wide range of the parameters of the problem. We have the boundary condition F(x 0) = 
i; the mixture is heated with respect to the surrounding medium. Here x 0 is the polar dis- 
tance of the jet. In [3] it was found that x 0 = -0.15 in a numerical solution for the case 
of a non-self-similar jet. 

The solution of the hydrodynamic part of the above system of equations has the form 

6 = (2?01/2Sv exp 1 q- ~AT~ x, 

ATm ,.,~ (7)  
exp ( 1 q- ~ATm ] 

u~ = 2?~Sv x 

Expressing the temperature AT m in terms of the heat flux Y, the axial component of the 
velocity Um, and the thickness of the jet 6, we have the following heat transport equation 

de = a~Br exp Sv (s + ~Fi (8) 
dx ~1 (271)2Sv 2x~ 

In  e v a l u a t i n g  t h e  e x p o n e n t i a l  on t h e  r i g h t  hand s i d e  of  t h i s  e q u a t i o n ,  we u s e d  t h e  f o l -  
lowing asymptotic expansions for the velocity and thickness of the jet 

um "" (271 Sv x) -~ + 0 (ATm), (9 )  

6 ,'~ (2y1) 1/2 Sv X 2c 0 (ATm). 

To study the possibility of a hydrodynamic heat explosion in a jet we consider the asymp- 
totic properties of a heat explosion, which assume a finite combustion path Xc, the analog 
of an induction period, and also a strong dependence of the viscosity of the fluid on tem- 
perature, ~ ~ i: 
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X B 

J exp d = 
F{..) Sv x ~ ~, (2w?Sv~x ~ ( iO) 

The quantity x on the left hand side of this equation is treated as a parameter. This 
assumption can be used because of the asymptotic properties of heat explosions; the growth of 
F in the immediate neighborhood of x c is determined by the following region of the parame- 
ters: Br ~ Sv2; Sv x c ~ I. The choice of this region and the possibility of a sharp change 
in the thermal behavior described by equations analogous to (8) are shown below for an ideal- 
ized example. Thepossibility of treating the variable x as a parameter was stimulated by 
the ideas of [6]. 

Integration of (i0) gives the result 

Z,x2 e + Z~x + Z~ = O, 
e 

a~Br _ Z 3 = - - Z w o .  Z1 = - -  x0 exp [ - - F  (x0)/(Sv x0)], Z, = - -  X~ (2?02Sva, 

(li) 

We can now determine the intervals of the viscous dissipation parameter Br corresponding to 
the regions of existence of the solution: 

for Br > Brcr (two solutions), 

for Br = Brcr (one solution), (12) 

for Br < Brcr (no solution), 

B r e r =  [4%1 (2?l)zSvax~]/{a~ exp [F (Xo)/(sv Xo)] }, 

and therefore a hydrodynamic heat explosion does not occur. 

The analytical approach to the problem yields an expression for the combustion path, 
which is an important characteristic of the motion of a fluid with a sharp change in its 
thermal behavior: 

- - Z 2 + _ ' I / Z ~ - - 4 Z 1 Z  ~ 
(x~)l,~ = 2& (13) 

We consider the following idealized example in order to show the possibility era hydro- 
dynamic heat explosion following from (8): 

dF exp (F/u~6 ~) 
. . . . .  m F (Xo) = Fo. ( 14 ) 
dx x z ' 

We p u t  Um 62 = c o n s t  = b .  T h i s  r e l a t i o n  i s  o b t a i n e d  by  i n t e g r a t i n g  t h e  e q u a t i o n  o f  c o n t i n u i t y  
using the boundary conditions of an axisymmetric jet. Then (14) reduces to the form 

dF exp (F/b) ( 1 5 )  

dx x z 
Integration of this equation gives 

mb 
F =  b ln [ l/x - 1/xo + - ~ b e x p ( _ F o / b )  1 . ( 1 6 )  

In order to illustrate (16) we put F(x 0) = 0, x 0 = 0.i; this corresponds to a cold mix- 
ture where the initial temperature of the jet is equal to that of the surrounding medium. 
Curves are shown in Fig. I for several values of the parameters m and b. Comparison of 
curves i and 4 shows the region of applicability of treating the variable x as a parameter 
in the integration of (i0): b ~ i, m ~ i. This corresponds to an insignificant increase 
in F over the large region from zero to x c and then a sharp change in F near x c. 

We analyze the obtained results, emphasizing the features of a hydrodynamic heat explo- 
sion in a jet in comparison with the analogous phenomenon in a pipe. We consider the asymp- 
totic forms of the low and high temperature regimes: $ ~ i, $ ~ i, respectively. The ar- 
gument of the exponentials in (6) has the form 

AT~ 1 1 '~ 
1 + ~ A T ~  ~ + 0  , 
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1~<< 1: AT., -~ ATm + 0(~). (17) 
1 + ~ATm 

Using (17) we obtain expressions for the velocity and thickness of the jet in the low 
and high temperature regimes: 

! 

---- e # 
[3>> h 6,-,(2yx)l/=Sve ~x+O(~-Z),um= 2yxSvxq-O(~-2), 

(18) 
eATm 

<< 1 : 8  ,.-, (2~,0~/~Sv e--AT~x + 0 (i~), u~ ,-: - -  
2~hSv x + 0(~). 

These relations can be used to determine the nature of the hydrodynamics of the jet in the 
presence of viscous dissipation when the viscosity of the fluid has a strong dependence on 
temperature. 

In the low-temperature regime viscous dissipation does not significantly change the 
nature of the variation of velocity and thickness along the axis of the jet: u m ~ I/x (Br = 0), 
6 ~ x (Br = 0). Heating of the fluid leads to an increase in the flow velocity and a dec- 
rease in the thickness of the jet; ejection of the surrounding medium decreases for a given 
impulse of the jet. 

We consider now a numerical estimate of the condition for a hydrodynamic heat explosion 
for the flow of glycerin, whose viscosity depends strongly on temperature. According to [7], 
the viscosity of glycerin as a function of temperature is well approximated by the expres- 
sion p = 2.69"10 -7 e 3ss71T Pa-sec. Using the following values of the parameters: p = 1.26- 
103 kg/m3; Too = 293~ u 0 = 0.3 m/see; d = 10 -2 m, we obtain Br = 0.77 for the viscous dis- 
dipation parameter, which determines the condition for a hydrodynamic heat explosion in 
glycerin. 

We return to a qualitative interpretation of the production of a hydrodynamic heat ex- 
plosion in a fluid jet by a mechanism which is well known in the theory of heat explosions. 
Figure 2 shows curves of the heat removed by convection and the heat production due to vis- 
cous dissipation. Curve I corresponds to a larger quantity of heat removed by convection 
than curve 3; the heat production in the low-temperature regime is characterized by curve 4 
and in the high-temperature regime by curve 2. In the low-temperature flow regime there is 
always one point of intersection of the two heat curves. A hydrodynamic heat explosion 
does not occur in this case and the flow is steady. The high-temperature flow regime is 
characterized by several points of intersection of the two heat curves (from one to three 
points, depending on the quantity heat removed). Three intersection points are possible for 
a low value of the heat removed and the middle point represents an unstable state (curve 3). 
The point a corresponds to the low-temperature regime and the point c to the high-temper- 
ature regime; the transition from the low to the high-temperature state corresponds to a 
change in the velocity from a large value to a small value. 

At small flow velocities heat cannot flow away and a steady flow regime becomes impos- 
sible, i.e., a hydrodynamic heat explosion arises. 

Finally we point out the difference between a hydrodynamic heat explosion in a jet and 
the analogous phenomenon in a pipe. As noted in [i], the essential difference between a 
hydrodynamic heat explosion for a fluid flowing in a pipe and a heat explosion of chemical 
origin is that in the former case there is no physical analog of the heat of the reaction. 
But there is such an analog for a hydrodynamic heat explosion in a fluid jet: the degree 
of ejection of the surrounding medium, characterized by the entrainment parameter of the 
fluid Sv. The cause of the ejection is the viscosity which has two effects in a jet. First 
it causes shear stresses, like the viscosity in a hydrodynamic heat explosion in a pipe. 
Second it draws the surrounding medium into the jet. The smaller this effect, the larger 
the ~heat" effect of the hydrodynamic heat explosion in an incompressible fluid jet. 

NOTATION 

p, dynamical viscosity; E, activation energy; R, gas constant; T, temperature of the 
fluid in the jet; v, longitidinal and transverse components of the velocity; x, y, longitu- 
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dinal and transverse coordinates; v, kinematic viscosity; a, thermal diffusivity; Cp, heat 
capacity at constant pressure; T~, temperature of the surrounding medium; I, impulse of the 
jet; Q, heat flux; p, density; d, nozzle diameter; r similarity variable; 6, thickness of 
the jet; f, stream function; 0, dimensionless temperature, 8 = E(T -T~)/TR~2; Br, Brickman 
number, Br = Pu02dexp(E/RT~)/Q*, Q* = ~pCpu0d2/4; Sv, entrainment parameter of the fluid' 

Sv = ~exp(E/RT~)/pu0d, ~ = RT~/E; F, dimensionless heat flux, F* = ~0CpUm~Tm62; Pr, Prandtl 

number, Pr = v/a; QI ~ (F -F0)/d; Q2 ~ exp(F/(x0 + ~F)Sv)/xB 2. 
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DETERMINING RHEOLOGICAL PARAMETERS FOR A DISPERSION 

SYSTEM BY ROTATIONAL VISCOMETRY 

M. A. Myslyuk UDC 532.135 

An algorithm has been devised for inverse treatment in rotational viscometry 
subject to a priori uncertainty over the model. A model class has been for- 
mulated for rheologically stationary systems. 

Dispersion systems are widely used, and determining their rheological characteristics 
is important in data support to optimum management. 

Some methods of processing data from rotational rheometry [1-3] make inadequate use of 
the information from experiment to derive models and evaluate parameters. Also, simplified 
methods are usually used to evaluate rheological characteristics for nonlinear viscoplastic 
media [i, 3], and these may give substantial errors in inverse treatments. 

One can process such data from an equation describing Couette flow in a gap between 
coaxial cylinders [i]: 

The relation between the stresses on the outer and inner cylinders is 

= f ~2T, if T~O /~2 ;  a [ %, i f  ~6]~o, %I~[,  

where T 0 is the dynamic shear stress (yield point), ~ = RI/R2, and R I and R 2 are the radii 
of the inner and outer cylinders. 

An inverse rheometric treatment involves choosing the state index v for the medium 
from a certain class ~ of^rheologically stationary models known a priori and then estimat- 
ing the parameter vector pv for that model. The ~ class can be formed from the following 
models: Newtonian (~ = i) - i = z/p, Shvedov-Bingham (v = 2) - y = (~-T0)/B, Ostwald_(v =_3) 
- ~ .= (~/k) I/n, Herschel'Bulkley (v = 4) - ~ = ((T-~0)/k) I/n, Schulman--Casson (v = 5) 
(T I/n - T011n)n/~, etc. Here p, To, k, n are the rheological parameters. 

Statistical methods are applied to treating the data [4], on the assumption that the 
discrepancy between the measurement vector T having components {Ti}, iel, N and the theoreti- 
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